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Rewrite (46),
€xp [ZPL(Sn)l] =

A - 1 ZL - AZ() 2

= 7u~—> =R:. (47
44+1 Zi+ 7
R, defined by (47), represents the reflection coefficient
at the boundary surface a or b. Therefore, if we set as

R=¢lr (48)

then L. denotes the reflection loss at those boundary
surfaces. Using the foregoing relation, (47) becomes

I(s,)l = — L, + jur. (49)

Remembering that, in the most practical cases,
e>>’x(s)|, the pole s, can be written, with the aid of
(15), as

$a = 2(anl — L)) + jwn. (50)
The residue for this pole .S, is
_ 1)nE eSnt
o ( ’ (51)

"B Ui — o)

Similarly, the residue for the pole of F.(s) in (42) is
given by
& = BV, (jw)er! (52)
and for the pole of ¥,(s),
Eoesnt

~ BT (s)isn — jo)

Pr (53)
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According to the Cauchy fundamental integral theorem,
the closed line integral along a closed contour AB(CDA
can now be given by the sum of all these residues en-
closed. On the other hand, the contributions along a
path C, vanish in the limit when 7, approaches infinity
as shown in (44). Accordingly,

tHi

Iim F(s)Y(s)estds

np— R

F($)V(s)estds = f

E—jw
= 21j2(¢ + p). (54)

Finally, substituting (45) and (51) or (52) and (53) into
the foregoing equation, the transmitted and reflected
electric fields can be expressed in terms of the function
of time as follows:

Et) = BV (jw)eiot + D, (—1)nE, et
E,() = EoV.(jw)eit + >, Eneent,

(55)
(56)
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Characteristics of Loaded Rectangular Waveguides
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Abstract—Electromagnetic fields of a rectangular waveguide
with an arbitrarily loaded slab are theoretically analyzed. Eigen-
values for the transmission modes are presented in the form of
universal eigenvalue charts. Electric field distributions in the loaded
waveguide are obtained theoretically, and they are compared with
the results of measurements. Power attenuation is also discussed,
and attenuation charts that give the lowest limitation for the attenu-
ation are shown. As an example of application the attenuation char-
acteristics of waveguide resistance attenuators are investigated,
and a new interpretation is derived for the phenomena where the
curves of attenuation characteristics have sharp peak points.
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I. INTRODUCTION

tangular waveguide loaded with a dielectric slab or
resistive strip at the center of the waveguide
parallel to the electric field have already been analyzed
by several investigators [1]-[4]. However, the char-
acteristics for a general case where the slab with an arbi-
trary admittance is loaded at a place with various
distances from the side wall have not been given [5].
The purpose of this paper is to present such character-
istics of the waveguides with some charts that show the
dependence of the characteristics tc the various
parameters.

THE TRANSMISSION characteristics of a rec-
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The calculations are made from Maxwell’s equations
and boundary conditions, and the results of the numeri-
cal computations are arranged in the form of eigenvalue
charts and attenuation charts. Experimental corrobora-
tions are also made for the electric fields in the loaded
waveguide and the attenuation along the direction of
propagation.

As an example of application, the attenuation char-
acteristics of waveguide resistance attenuators are in-
vestigated, and a new interpretation is derived for the
phenomena where the curves of attenuation character-
istics have sharp peak points.

II. FUNDAMENTAL EQUATIONS

Consider a loaded waveguide whose geometry is
shown in Fig. 1, where the slab is replaced by an ex-
tremely thin sheet and the waveguide is excited at s=0
by an empty waveguide with TE;, mode. Then the elec-
tromagnetic fields for the loaded waveguide can be ob-
tained from Maxwell’'s equations and the boundary
conditions as follows:

B, = jopohy A sin hyy- et
Hy1 = jhyh, A sin byy-e=tZ
H,, = h2A4 cos hyy-ehZ
Ejy=Esn=Hu=0
By = jouohy AL sin by(b — y) -¢~772
Hys = jhyh,A¢ sin by (b — y) - e~ 7

,  0<y<d, Q)

, d<y<0 (2

H. = — h2Af cos hy(b — y) e

Eypp = FEp=Hp=0
¢ = sin A,d/sin k(b — d), (3)
Iny? 4 b — wlequp = 0, 4)

where h,=£-jn and h,=B—ja are propagation con-
stants in ¥ and 2z directions, respectively, and A4 is an
amplitude factor. In this calculation a harmonic time-
dependent factor e** is implicitly understood, and the
time-dependent quantities are expressed by their effec-
tive values. The complex eigenvalues of %, are given by
the roots of a characteristic equation

by sin byb = — jowueaY sin kbyd sin b, (b — d) (5)

where Y=G+jB is the admittance of a load slab per
unit length along the axis of the waveguide.

The electromagnetic fields will be obtained by intro-
ducing these eigenvalues into (1), (2), (3), and (4).

Resistive sinp
gLl Rectangular
a waveguide
m
Eo, Ho 2)
€M,
# y

[ d b

Fig. 1. Geometry of rectangular waveguide loaded with a resistive

strip having an arbitrary admittance.
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II1. EIGENVALUES AND PROPAGATION CONSTANTS
A. Eigenvalues of h,b

From the characteristic equation (5), two sets of eigen-
values for kb can be obtained. The one is as the roots of

hyb sin kb .
; : = — jopwad?, (6)
sin &,d sin k(b — d)

when sin %,d sin 4,(b—d)s£0, and the other is as
b = &b = mw, 1b =0,
Y & T, 7 } ’ (7)

hd = nrw
when these conditions are satisfied, where m and # are
positive integers.

It is easily found that (6) has a number of roots for
one value of the admittance ¥, and the value of %,b has
a number of branch points on the complex plane of Y.
These values of &,b have been computed by digital com-
puter. In order to show them in the form of charts for
practical use, many sheets of Riemann surfaces are
considered, where branch cuts are placed on the lines of
£b=rconstant for convenience. The values on each of
these Reimann surfaces correspond to the eigenvalues
for one mode, and the mode that has the smallest value
of £b in these surfaces is named as the first mode, and
the one that has the second smallest value of £b as the
second mode, and so on.

A few examples of the eigenvalue charts [6] for the
first two modes, where the real and the imaginary parts
of the eigenvalues are plotted on the complex plane of
admittance Y, are shown in Fig. 2.

With these charts the real and the imaginary parts of
the complex eigenvalues of kb or the values of £b and #b
are obtainable for any given value of the load admit-
tance Y or any combination of wuyabG and wuezbB. The
relations shown with these charts hold for arbitrary
values of @, b, and w. In other words, these charts may
be called the universal eigenvalue charts for a loaded
rectangular waveguide.

B. Complex Propagation Consiants

Multiplying (4) by Ao, the wavelength in free space,
and separating the real and the imaginary parts, one
obtains universal relations as follows:

1
axo=ﬁl\/{<27r> — (EN)% + (m\0)?}% -+ 4(EN0)2(n)o)

— {(2m)2 — (8\0)? + ()2} ]*72, (neper), (8)
1
Bho = 7 [V{(2m)2 — (EA)? + (h0)2}? + 4(ENo)2(ho)?
+ {272 — (B\)2 + ()2} ]2, (rad.). 9)

These values of aly and B\, are plotted in Figs. 3 and 4
vs. ENy for various values of the parameter y\,. By mak-
ing use of Fig. 2 or (7) and Figs. 3 and 4, the phase con-
stants and the attenuation constants for an arbitrarily
loaded rectangular waveguide of any size will be deter-
mined easily.
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(c)

Fig. 2.
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Eigenvalue charts. (a) d/56=0.2, the first mode. (b) d/b=0.2,

the second mode. (¢) d/b=0.4, the first mode. (d) d/6=0.4, the

second mode.

ol Ao (db)

0 4 (@m)
8_ . g rad) 12

Fig. 3. Universal curves for the normalized attenuation constant

alo plotted vs. o with parameter g)q.

IV. ELECTROMAGNETIC FIELDS IN THE
LoapEp WAVEGUIDE

For simplicity it is assumed here that the effect of
the load admittance is so small that the shape of the
electric field distribution at the excitation surface z2=0
is nearly equal to that of TEy, in the empty waveguide.
In this case the amplitude factor A4, for mth mode can
be determined by taking into account the orthogonality
[7] for the electric fields of the loaded waveguide modes
as follows:

An il [( d+h d>
—=———|sinlr— m
Ao 7+ hypb Ty M

+ i ¢ Bym (b d}J !
$m SN {w 5 ym ) A

@

——————— — _M\10fad)|

— ﬁk,(rnd)

x\

N

° 4 @n )

s\t 2

Fig. 4. Universal curves for the normalized phase constant 8\,
plotted vs. £\o with parameter gh,.

T d
— —[sin <7r — = hymd>
T — Hynb b

Fgwsin {r Lo = O [0 (0)
where
Ap = %{sin 2hym@ + En? 8in 2%, (0 — d)}
— {Iymd + Enym(b — )}, (11)

and A, is the amplitude factor of TE;p in the empty
waveguide.

From (10) it is easily found that (Bym/ky0)(An/Ao)
o« 1/m? for m>>1, and the value of amplitude factor 4,
for higher mode diminishes very rapidly with increasing
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m, the order of higher mode. For this reason, it is suffi-
cient in this case to take only the first several modes for
the approximate expressions of the electromagnetic
fields in the loaded waveguide.

V. NUMERICAL EXAMPLE OF THE ELECTRIC FIELDS
A. Admittance of the Load Slab

Throughout the theory just described the thickness of
the load slab is neglected, but the actual load always
has a finite thickness, and the theory cannot be applied
directly to such a case. When the thickness is consider-
ably small compared with the width of waveguide,
however, it is found from the experiments that the ef-
fects of the thickness are negligible if an equivalent
admittance of the load slab is introduced in place of the
sheet admittance [8]. For example, an equivalent admit-

f:1800 Mc
Rs1:230

LN

N

N

—» Y

(a)

Fig. 5.
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tance of dielectric plate loaded in the waveguide is given
by

By = (1/a)weo(k,-1)t (12)
where «, is specific dielectric constant, ¢ is the thickness,
and a is the height of the waveguide. In the case of at-
tenuators, however, such a dielectric base plate is
coated with a conducting thin film of metal or carbon,
which has resistive or capacitive impedance in general

[9].

B. Computation of the Electric Fields

Numerical computations have been made of the elec-
tric fields in the loaded waveguide with the method just
described by taking only the first two modes. The di-
mensions of the waveguide and the construction of the
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The first mode, the second mode, and the resultant electric

field patterns. (a) Ry=230 ©, f=1800 Mc, d/6=0.25. (b) Ruq
=1130 @, f=1800 Mc, d/b=0.25.
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load are as follows:

a=175 mm,

d/b=0.1, 0.25, and 0.4,

b=150 mm,
f=1800 Mec,

thickness of the base plate (bakelite) =4 mm, surface
resistance of resistive film (carbon film), Ry, =230 Q and
11309, hence,

¥ = 57.7 4 437.0 (millimho/m)
and
11.8 4 720.2 (millimho/m).

Examples of the distribution of E, for the first and the
second modes and the resultant fields at various values
of z are shown in Fig. 5. Measurements of the total
electric fields for various values of z have also been
made under the same conditions, and the measured
values are compared wich theoretical ones in Fig. 6,
which shows fairly good agreements between them.

VI. ATTENUATION IN THE LOADED WAVEGUIDE
A. General Consideration

For the loaded waveguides with lossy admittances
the orthogonality relations for the powers between two
modes do not exist [10], and the transmission power P;
at g=1 is generally given by

P, = Z_j iij Re (Poms) (13)

where P, is the complex power between the electric
field of mth mode and the magnetic field of #th mode
defined by

Pown = f EomHy,*dS. (14
8

It should be noted here that the mutual power Peon, is
not equal to P, in general. However, a relation between
Ponn and P... can be derived from (1) and (14), that is,

[Pemntton)* = Powmbton. (15)

As for the attenuation of the transmission power,
there exists a general expression

Y = 10 10g10 (Po/Pl)

where v is the power attenuation for the loaded wave-
guide with the length /.

(16)

B. Approximation in the Calculation of Attenuation

From the analysis described in the preceding sections
it is easily found that the attenuation constants of the
higher modes of the loaded waveguide are extremely
large compared with that of the first or the second mode.
Moreover, the amplitude factors for the higher modes
are usually very small as mentioned in Section IV. For
these two reasons, it will be sufficient to take only a few
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terms of (13) in the computation of the transmission
power P at the point where the distance from the excita-
tion point is not too small.

According to several examples of numerical computa-
tion for the loaded waveguides with the dimensions of
b<Ny and a<Ay/2, the attenuation constants for the
third and the higher modes are always very large, but
sometimes the attenuation constant of the second mode
becomes smaller than that of the first mode il the value
of d/b is not near zero and the load admittance is not
too small.

By taking these facts into consideration, the following
approximate expression is employed in the computa-
tion:

PZQ’_P11+P12+P21+P22; (17)

where P, is the real part of the complex power Pemn.
Figure 7 shows two examples of the attenuations com-
puted from (17) and plotted vs. d/b for fixed value of
the load admittance. The attenuations of the first and
the second modes are also shown with dashed lines in
the same figure,

C. Attenuation Charts [11]

From Fig. 7 it is found that further approximation
will be done for the attenuation, where the result of
approximation is quite simple but still gives very im-
portant information about the characteristics of the
attenuation. That is to take only one mode that has
lowest attenuation in the computation of the power
attenuation for the loaded waveguide. The results that
will be obtained by this procedure are considered to
give the lowest limitation for the attenuation. In other
words, they give correct attenuation characteristics for
the limiting case of infinitely long loaded waveguide.
Figure 8 shows the value of attenuation per free space
wavelength for such limiting case.

VII. APPLICATION TO WAVEGUIDE ATTENUATORS

As an example of application of the present treatment
let us investigate the behavior of the attenuation
characteristics of a vane-type waveguide attenuator.
In the practical attenuator the load plate does not con-
tact directly with the upper and lower walls of the
waveguide, but there exist small air gaps at both ends
of the plate. The effects of the gaps have been studied,
and a modified equivalent admittance, where the ef-
fects of slab thickness are also considered, has been in-
troduced [12]. By taking this modified equivalent ad-
mittance and using Fig. 8, attenuation characteristics
for the limiting case are determined, and the results are
shown in Fig. 9. As the characteristics of variable at-
tenuators, the curves that have irregular variations for
the distance d are not adequate, whereas the curves
that have even variation over wide ranges of the values
of attenuation and d are desirable. From this point of
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view Fig. 9 contains very important information about
the relations between the shape of the attenuation
curves and the values of normalized admittances, and it
will be utilized in designing vane-type waveguide atten-
uators.

From Fig. 9 an interesting and entirely new interpre-
tation about the irregular characteristics of waveguide
resistance attenuators will be derived. Heretofore, the
irregular variation of attenuation characteristics where
some peak points exist at some distances of d has been
explained as a resonance phenomenon in the circuit of
the load slab and the gap capacitance (e.g. [13]). How-
ever, the load slab always has capacitive reactance as
understood from the considerations in Section V-A, and
the resonance with the gap capacitance cannot exist. A
new interpretation for such phenomena derived here is
that the peak attenuation occurs around the point
where the lowest attenuation mode changes from one
mode to another. Such phenomena are seen in Fig. 7(b)
and the curves for large admittances in Fig. 9.

VIII. CoNCLUSIONS

The electromagnetic fields of a loaded rectangular
waveguide have been analyzed, and the results of the
numerical computation have been presented by various
curves and universal charts. Some experimental cor-
roborations have also been made, and good agreements
between the theory and the experiments have been
found. Application of this study to the vane-type
attenuators is discussed, and a new interpretation for
the peaks in the curves of their attenuation characteris-
tics is shown.

Although some approximations are involved in the
treatment just described, it is believed that the results
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give valuable and new information about the charac-
teristics of the loaded rectangular waveguides.
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