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Rewrite (46),.

exp [2r~(~n)l] =
s= (:-::Y”R2
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According to the Cauchy fundamental integral theorem,

(47)
the closed line integral along a closed contour A B L’DA

can now be given by the sum of all these residues en-

R, defined by (47), represents the reflection coefficient
closed. On the other hand, the contributions along a

at the boundary surface a or b. Therefore, if we set as
path C, vanish in the limit when 7P approaches infinity

as shown in (44). Accordingly,

R = ~–L, (48)

+ J

E+jm
lim F(s) Y(s)e’%k =

then L, denotes the reflection loss at those boundary
F(s) I’(s)e”ds

77.+ m ?—;@
surfaces. Using the foregoing relation, (47) becomes

. .

= 27ri2(dl + R). (54)

Remembering

e>> ] x(s) 1, the

(15), as

r(~n)l = – L, + jmr.
. . . .

(49)
.,

Finally, substituting (45) and (51) or (52) and (53) into

that, in the most practical cases, the foregoing equation, the transmitted and reflected

pole S. can be written, with the aid of electric fields can be expressed in terms of the function

s. = 2 (%1 – L,) (8f) + j% (50) ‘f

The residue for this pole S. is

Similarly, the residue for the pole c,f F,(s) in (42) is ‘1]

given by
@, = EOl’,(jti)e~wi (52) PI

and for the pole of Y,(s), [3]

EOes’t

“ = I B I r’(sn)l(sn - j,~ “
(53) [4]

time as follows:

ll~(t) = EOY~(jco)e@t + ~n (– l)nEne’~t (55)

E,(t) = E. Y,(jco)ejwt + ~n EneS’t. (56)
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Characteristics of Loaded Rectangular Waveguides

Y. MUSHIAKE, SENIOR MEMBER, IEEE, AND T. ISHIDA

Abstract—Electromagnetic fields of a rectangular waveguide

with an arbitrarily loaded slab are theoretically analyzed. Eigen-

values for the transmission modes are presented in the form of

universal eigenvalue charts. Electric field distributions in the loaded

waveguide are obtained theoretically, and they are compared with

the results of measurements. Power attenuation is also discussed,

and attenuation charta that give the lowest limitation for the attenu-

ation are shown. As an example of application the attenuation char-

acteristics of waveguide resistance attenuatora are investigated,

and a new interpretation is derived for the phenomena where the

curves of attenuation characteristic have sharp peak points.

Manuscript received September 24, 1964; revised March 29,
1965.

Y. Mushiake is with the Dept. of Electrical Communications,
Faculty of Engineering, Tohoku University, Sends\, Japan.

T. Ishida is with the Dept. of Electronic Engineering, Faculty
of Engineering, Yamanashi University, Kofu, Japan.

1, INTRODUCTION

T

HE TRANSL~ ISSION characteristics of a rec-

tangular waveguide loaded with a dielectric slab or

resistive strip at the center of the waveguide

parallel to the electric field have already been anallyzed

by several investigators [1 ]– [4 ]. However, the char-

acteristics for a general case where the slab with an iarbi-

trary admittance is loaded at a place with various

distances from the side wall have not been given [5, ].

The purpose of this paper is to present such characteri-

stics of the waveguides with some charts that show the

dependence of the characteristics to the various

parameters.
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The calculations are made from Maxwell’s equations

and boundary conditions, and the results of the numeri-

cal computations are arranged in the form of eigenvalue

charts and attenuation charts. Experimental corrobora-

tions are also made for the electric fields in the loaded

waveguide and the attenuation along the direction of

propagation.

As an example of application, the attenuation char-

acteristics of waveguide resistance attenuators are in-

vestigated, and a new interpretation is derived for the

phenomena where the curves of attenuation character-

istics have sharp peak points.

II. FUNDAMENTAL EQUATIONS

Consider a loaded waveguide whose geometry is

shown in Fig. 1, where the slab is replaced by an ex-

tremely thin sheet and the waveguide is excited at z = O

by an empty waveguide with TElo mode. Then the elec-

tromagnetic fields for the loaded waveguide can be ob-

tained from Maxwell’s equations and the boundary

O<y<d, (1)

d<y~b, (2)

r = sin bud/sin hu(b – d), (3)

kyz + hzz – u2eopo = O, (4)

where hy = ~+jq and h.= 13—ja are propagation con-

stants in y and z directions, respectively, and A is an

amplitude factor. In this calculation a harmonic time-

dependent factor e’”’ is implicitly understood, and the

time-dependent quantities are expressed by their effec-

tive values. The complex eigenvalues of hV are given by

the roots of a characteristic equation

h. sin hvb = – jup,a Y sin hUd sin hU(b – d) (5)

where Y= G +jB is the admittance of a load slab per

unit length along the axis of the waveguide.

The electromagnetic fields will be obtained by intro-

ducing these eigenvalues into (1), (2), (3), and (4).

tx ,

Resistive strip

angular

a
aveguide

0

Fig. 1. Geometry of re~tangular ~aveguide loaded with a resistive
strip having an arbitrary admittance.

III. EIGENVALUES AND PROPAGATION CONSTANTS

A. Eigenvalues of h.b

From the characteristic equation (5), two sets of eigen-

values for hub can be obtained. The one is as the roots of

hvb sin hub
– – jcq.mab Y, (6)

sin hVd sin hv(b – d) –

when sin hyd sin hv(b —d) # O, and the other is as

hvb = [b = mr, qb = O,

hgd = n~ }
9 (7)

when these conditions are satisfied, where m and n are

positive integers.

It is easily found that (6) has a number of roots for

one value of the admittance Y, and the value of hub has

a number of branch points on the complex plane of Y.

These values of hyb have been computed by digital com-

puter. In order to show them in the form of charts for

practical use, many sheets of Riemann surfaces are

considered, where branch cuts are placed on the lines of

.$b= constant for convenience. The values on each of

these Reimann surfaces correspond to the eigenvalues

for one mode, and the mode that has the smallest value

of ~b in these surfaces is named as the first mode, and

the one that has the second smallest value of ~b as the

second mode, and so on,

A few examples of the eigenvalue charts [6] for the

first two modes, where the real and the imaginary parts

of the eigenvalues are plotted on the complex plane of

admittance Y, are shown in Fig. 2.

With these charts the real and the imaginary parts of

the complex eigenvalues of hvb or the values of $b and qb

are obtainable for any given value of the load admit-

tance Y or any combination of apoabG and copoabB. The

relations shown with these charts hold for arbitrary

values of a, b, and co. In other words, these charts may

be called the universal eigenvalue charts for a loaded

rectangular waveguide.

B. Complex Propagation Constants

Multiplying (4) by ho, the wavelength in free space,

and separating the real and the imaginary parts, one

obtains universal relations as follows:

cdo = L (d{ (2T)2 — (gxo)z + (qxo)z} 2 + 4(&xo)2(qxi))2
42

– { (2r)2 – ($ko)2 + (qho)’} ]1/2, (neper), (8)

Bxo = * [<{ (27r)2 – (fxo)’ + (?lxo)’] 2 + 4(mo)’(?7ko)’

+ { (2T)’ – ($AJ2 + (qko)’) ]1/2, (rad.). (9)

These values of OAO and PAO are plotted in Figs. 3 and 4

vs. .$Ao for various values of the parameter vXO. By mak-

ing use of Fig. 2 or (7) and Figs. 3 and 4, the phase con-

stants and the attenuation constants for an arbitrarily

loaded rectangular waveguide of any size will be deter-

mined easily.
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Fig. 2. Eigenvalue charts. (a) d/b= 0.2, the first mode. (b) d/b =0.2,
the second mode. (c) d/b = 0.4, the first mode. (d) d/b= 0.4. the
second mode.

16r I I 1

Fig. 3. Universal curves for the normalized attenuation constant
CAO plotted vs. gko with parameter TAO.

IV. ELECT~OMAGNETIC FIELDS IN THE

LOADED WAVEGUIDE

For simplicity it is assumed here that the effect of

the load admittance is so small that the shape of the

electric field distribution at the excitation surface z = O

is nearly equal to that of TEIO in the empty waveguide.

In this case the amplitude factor Am for mth mode can

be determined by taking into account the orthogonality

[7] for the electric fields of the loaded waveguide modes

as follows:

Fig. 4. Universal curves for the normalized phase constant (3x0

plotted vs. gAO with parameter TXO.

where

- {hind + ~~’hg~(b - d)], (11)

and A O is the amplitude factor of TE1o in the empty

waveguide.

From (10) it is easily found that (htiJhVJ (AJA 0)
w l/wzZ for nz>>l, and the value of amplitude factor A ~

for higher mode diminishes very rapidly with increasing
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m, the order of higher mode. For this reason, it is sLLffi-

cient in this case to take only the first several modes for

the approximate expressions of the electromagnetic

fields in the loaded waveguide.

V. NUMERICAL EXAMPLE OF THE ELECTRIC FIELDS

A. Admittafice of the Load Slab

Throughout the theory just described the thickness of

the load slab is neglected, but the actual load always

has a finite thickness, and the theory cannot be applied

directly to such a case. When the thickness is consider-

ably small compared with the width of waveguide,

however, it is found from the experiments that the ef-

fects of the thickness are negligible if an equivalent

admittance of the load slab is introduced in place of the

sheet admittance [8]. For example, an equivalent adlmit-

UxZrJ

-—-—.
O 0.2 0.4 0.6 0.8

— yh
(a)

Lo

tance of dielectric plate loaded in the waveguide is given

by

Bil = (1/a) ox(l(K6_l)t (12)

where K. is specific dielectric constant, t is the thickness,

and a is the height of the waveguide. In the case of at-

tenuators, however, such a dielectric base plate is

coated with a conducting thin film of metal or carbon,

which has resistive or capacitive impedance in general

[91.

B. Computation of the Electric Fields

Numerical computations have been made of the elec-

tric fields in the loaded waveguide with the method just

described by taking only the first two modes. The di-

mensions of the waveguide and the construction of the

1.2
~

\
g [.0

t
0.8

0.6

0,4

0.2

0 0.2 0.4 0.6 0.8 LO
— Yp

(b)

Fig. 5. The first mode, the second mode, and the resultant electric
field patterns. (a) R,~=230 fl, f= 1800 Mc, d/b =0.25. (b) R,~
=1130 Q, f=1800 Mc, d/b= O.25.

JMc

q:230

H\‘i,,

OLJ&f2?+ ‘vi‘
~-+iExperimental “

o 0.2 0.4 0.6 0.8 1.0
_ y/b

(a) (b)

Fig. 6. Examples of measured electric field patterns. (a) R.. = 230 Q
f= 1800 Mc, d/b= O.25. (b) R,q= 1130 Q, j= 1800 Mc) d/b= O.25.
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load are as follows:

a= 75 mm, 6:=150 mm,

d/b= O.1, 0.25, and 0.4, ~:= 1800 ~~C,

thickness of the base plate (bakelite) = 4 mm, surface

resistance of resistive film (carbon film), R,q = 230 Q and

1130L?, hence,

J’ = 57.7 + j37,0 (millimho/m)

ancl

11.8 + j20.2 (millimho/rn).

Examples of the distribution of Ez for the first and the

second modes and the resultant fields at various values

of z are shown in Fig. 5. Measurements of the total

electric fields for various values of z have also been

made under the same conditions, and the measured

values are compared wi~h theoretical ones in Fig. 6,

which shows fairly good agreements between them.

VI. ATTENUATION IN THE LOADED W~VEGUIDE

A. General Consideration

For the loaded waveguides with 10SSY admittances

the orthogonality relations for the powers between two

modes do not exist [10], and the transmission power PZ

at z = 1 is generally given by

(13)
m=l n=l

where P,n,m is the complex power between the electric

field of mth mode and the magnetic field of nth mode

defined by

P cwbn= sEz~Hun*dS. (14’)
s

It should be noted here that the mutual power P,~~ is

not equal to p~~~ in general. However, a relation between

P ,~~ and P,~~ can be derived from (1) and (14), that is,

[p.mnLJ* = Pcnmhn< (15)

As for the attenuation of the tr~lnsnlission power,

there exists a general expression

-y = 10 1W1O (Po/PJ (16)

where 7 is the power attenuation for the loaded wave-

guide with the length 1.

B. Approximation in the Calculation of A ttenuation

From the analysis described in the preceding sections

it is easily found that the attenuation constants of the

higher modes of the loaded waveguide are extremely

large compared with that of the first or the second mode.

Moreover, the amplitude factors for the higher modes

are usually very small as mentioned in Section IV. For

these two reasons, it will be sufficient to take only a few
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terms of (13) in the computation of the transmission

power P at the point where the distance from the excita-

tion point is not too small.

According to several examples of numerical computa-

tion for the loaded waveguides with the dimensions of

b <~, and a <AO/2, the attenuation constants for the

third and the higher modes are always very large, but

sometimes the attenuation constant of the second mode

becomes smaller than that of the first modle if the value

of d/b is not near zero and the load admittance is not

too small.

By taking these facts into consideration, the following

approximate expression is employed in the computa-

tion:

Pl = Pll + P12 + P21 + P22, (17)

where P~~ IS the real part of the complex power P.~~.

Figure 7 shows two examples of the attenuations com-

puted from (17) and plotted vs. d/b for fixed value of

the load admittance. The attenuations of the first and

the second modes are also shown with dashed lines in

the same figure.

C. Attenuation Charts [11]

From Fig. 7 it is found that further approximation

will be done for the attenuation, where the result of

approximation is quite simple but still gives very im-

portant information about the characteristics of the

attenuation. That is to take only one mode that has

lowest attenuation in the computation of the power

attenuation for the loaded waveguide. The results that

will be obtained by this procedure are considered to

give the lowest limitation for the attenuation. In other

words, they give correct attenuation characteristics for

the limiting case of infinitely long loaded ‘waveguide.

Figure 8 shows the value of attenuation per free space

wavelength for such limiting case.

VII. APPLICATION TO W~VEGUIDE ATTENUATORS

As an example of application of the present treatment

let us investigate the behavior of the attenuation

characteristics of a vane-type waveguicle attenuator.

In the practical attenuator the load plate dc)es not con-

tact directly with the upper and lower walls of the

waveguide, but there exist small air gaps at both ends

of the plate. The effects of the gaps have been studied,

and a modified equivalent admittance, where the ef-

fects of slab thickness are also considerecl, has been in-

troduced [12 ]. By taking this modified equivalent ad-

mittance and using Fig. 8, attenuation characteristics

for the limiting case are determined, and the results are

shown in Fig. 9. As the characteristics of variable at-

tenuators, the curves that have irregular variations for

the distance d are not adequate, whereas the curves

that have even variation over wide ranges of the v:dues

of attenuation and d are desirable. From this point of
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Fig. 7. Examples of theoretical attenuation constants of resistive
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Fig. 9. Variations of attenuation characteristics for various equiva-
lent admittances Y= G +jl? of resistive strips for XO/b = 1.3.
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view Fig. 9 contains very important information about

the relations between the shape of the attenuation

curves and the values of normalized admittances, and it

will be utilized in designing vane-type waveguide atten-

uators.

From Fig. 9 an interesting and entirely new interpre-

tation about the irregular characteristics of waveguide

resistance attenuators will be derived. Heretofore, the

irregular variation of attenuation characteristics where

some peak points exist at some distances of d has been

explained as a resonance phenomenon in the circuit of

the load slab and the gap capacitance (e.g. [13 ]). How-

ever, the load slab always has capacitive reactance as

understood from the considerations in Section V-A, and

the resonance with the gap capacitance cannot exist. A

new interpretation for such phenomena derived here is

that the peak attenuation occurs around the point

where the lowest attenuation mode changes from one

mode to another. Such phenomena are seen in Fig. 7(b)

and the curves for large admittances in Fig. 9.

VIII. CONCLUSIONS

The electromagnetic fields of a loaded rectangular

waveguide have been analyzed, and the results of the

numerical computation have been presented by various

curves and universal charts. Some experimental cor-

roborations have also been made, and good agreements

between the theory and the experiments have been

found. Application of this study to the vane-type

attenuators is discussed, and a new interpretation for

the peaks in the curves of their attenu~tion characteris-

tics is shown.

Although some approximations are involved in the

treatment just described, it is believed that the results

give valuable and new information about the charac-

teristics of the loaded rectangular waveguides.
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